MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge
نویسندگان
چکیده
A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM) simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach.
منابع مشابه
Micro-Fabricated DC Comparison Calorimeter for RF Power Measurement
Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has ...
متن کاملComparison of thermistor linearization techniques for accurate temperature measurement in phase change materials
Alternate energy technologies are developing rapidly in the recent years. A significant part of this trend is the development of different phase change materials (PCMs). Proper utilization of PCMs requires accurate thermal characterization. There are several methodologies used in this field. This paper stresses the importance of accurate temperature measurements during the implementation of T-h...
متن کاملA Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass
This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology...
متن کاملA High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge
In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezores...
متن کاملDifferential reflectance modulation sensing with diffractive microstructures
Related Articles Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix J. Appl. Phys. 112, 094324 (2012) Wheatstone bridge piezoresistive sensing for bulk-mode micromechanical resonator Appl. Phys. Lett. 101, 193505 (2012) Distant mechanical sensors based on cholesteric liquid crystals Appl. Phys....
متن کامل